22 research outputs found

    Smoothed particle hydrodynamics on GPU computing

    Get PDF
    Smoothed Particle Hydrodynamics (SPH) is a powerful technique used to simulate complex free-surface flows. However one of the main drawbacks of this method is the expensive computational runtime and the large number of particles needed when 3D simulations are performed. High Performance Computing (HPC) therefore becomes essential to accelerate these codes and perform simulations. In this study, parallelization using Graphics Processing Units (GPU) is applied to the SPHysics code (www.sphysics.org) dedicated to free-surface flows with SPH. Simulations involving several million particles on a single GPU exhibit speedups of up to two orders of magnitude over the same calculations using CPU codes, while parallelization using MPI for multi-GPU leads to further acceleration. This cheap technology allows studying real-life engineering problems at reasonable computational runtimes

    Uso de la t茅cnica SPH para el estudio de la interacci贸n entre olas y estructuras

    Get PDF
    [ES] Se muestra la potencialidad del m茅todo SPH (Smoothed Particle Hydrodynamics) para el tratamiento de la interacci贸n entre olas y estructuras. En particular, se estudia el proceso de rebase de una ola sobre una estructura horizontal paralela a la superficie del agua en reposo mediante una versi贸n bidimensional del c贸digo y la colisi贸n de una ola solitaria con una estructura vertical delgada mediante una versi贸n tridimensional. En ambos casos se muestra c贸mo el modelo reproduce tanto cualitativa como cuantitativamente diferentes experimentos de laboratorio.G贸mez Gesteira, M.; Dalrymple, R.; Crespo, A.; Cerqueiro, D. (2004). Uso de la t茅cnica SPH para el estudio de la interacci贸n entre olas y estructuras. Ingenier铆a del agua. 11(2):147-170. https://doi.org/10.4995/ia.2004.2525OJS147170112Baarholm, R.J., 2001. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms.Batchelor, G. K., 1974. Introduction to fluid dynamics. Cambridge University Press. U.K.Benz, W., 1989. Smooth particle hydrodynamics: A review. Numerical Modeling of Stellar Pulsation: Problems and Prospects, (Proceedings of NATO Workshop, Les Arcs, France).Benz, W. and Asphaug, E., 1993. Explicit 3D continuum fracture modeling with smoothed particle hydrodynamics. Proceedings of Twenty- fourth Lunar and Planetary Science Conference. Lunar and Planetary Institute, 99- 100.Benz, W. and Asphaug, E., 1994. Impact simulations with fracture. I. Methods and tests. Icarus 107, 98-116.Benz, W. and Asphaug, E., 1995. Simulations of brittle solids using smoothed particle hydrodynamics. Comp. Phys. Comm., 87, 253- 265.Bonet, J. and Kulasegaram, S., 2000. Corrections and stabilization of Smooth Particle Hydrodynamics methods with applications in metal forming simulations. Intl. J. Num. Meth. Engrng., 47, 1189-1214.Buchner, B. and Cozijn, J.L., 1997. An investigation into the numerical simulation of green water. MARIN, February 1997.Buchner, B.a and van Ballegoyen, G., 1997a. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A2: Technical Report.Buchner, B. and van Ballegoyen, G., 1997b. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume A3: Scale effect tests.Buchner, B. and van Ballegoyen, G., 1997c. Joint Industry Project: F(P)SO Green Water Loading. MARIN, May 1997. Volume C9: Buchner, B. and van Ballegoyen, G., 1997d. Joint Industry Project: F(P)SO Green Water Loading. MARIN, December 1997. Volume A1: Discussion Report.Cerqueiro, D., Zou, S, G贸mez-Gesteira, M, and Dalrymple, R.A. 2004. Boundary conditions generated by static particles in SPH methods. Submitted J. Comput. Phys.Chen, S., Johnson, D.B., Raad, P.E., and Fadda, D., 1997. The Surface Marker and Micro Cell Method. International Journal for Numerical Methods in Fluids, 25, 749-778.Cox, D. T. and Ortega, J. A., 2002. Laboratory observations of green water overtopping a fixed deck. Ocean Engnrg. 29, 1827-1840.Cummins, S. J. and Rudman, M., 1999. An SPH projection meted. J. Comp. Phys. 152, 584-607.Dalrymple, R.A. and Knio, O., 2000. SPH Modelling of Water Waves. Proc. Coastal Dynamics, Lund, 779-787Dalrymple, R. A., Knio, O., Cox, D. T., Gomez-Gesteira, M. and Zou, S., 2002. Using a Lagrangian particle method for deck overtopping. Proc. Waves 2001, ASCE. 1083- 1091.Durisen, R. H., Gingold, R. A. and Boss, A. P., 1986. Dynamic Fission Instabilities in Rapidly Rotating n=3/2 Polytropes: A Comparison of Results from Finite-difference and Smoothed Particle Hydrodynamics Codes. Astron. J. 305, 281- 308.Evrard A.E., 1988. Beyond N-body: 3D cosmological gas dynamics. Mon. Not. R. Astr. Soc., 235, 911- 934.Faber, J.A and Manor, J.B., 2001. Post Newtonian SPH Calculations of Binary Neutron Star Coalescence. II. Mass- ratio, equation of state and spin. Physical Review D (63), 044012 (1-16)Faber, J.A and Rasio, F.A., 2000. Post Newtonian SPH Calculations of Binary Neutron Stars Coalescence. Method and First Results. Physical Review D (62) 064012 (1-23)Faltinsen, O.M., Greco, M. and Landrini, M., 2001. Green water loading on a FPSO. JOMAE Special Issue.Fontaine, E., 2000. On the use of smoothed particle hydrodynamics to model extreme waves and their interaction with structures. Proc. Rogue Waves 2000, Brest, France. www.ifremer.fr/metocean/conferences/wk.htmlGingold, A. and Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc. 181, 375-389.G贸mez-Gesteira, M. and Dalrymple, R., 2004. Using a 3D SPH method for wave impact on a tall structure. J. Wtrwy. Port, Coastal and Ocean Engrg.130(2), 63-69G贸mez-Gesteira, M., Cerqueiro, D., Crespo, C. and Dalrymple, R.A. 2004. Green water overtopping analyzed with a SPH model. To appear in Ocean Engineering.Gotoh, H. and Sakai, T., 1999. Lagrangian simulation of breaking waves using particle meted. Coastal Eng. J. 41(3&4), 303-326.Gotoh, H. and Fredsoe, J., 2000. Lagrangian two- phase flow model of the settling behavior of fine sediment dumped into water. In Coastal Engineering 2000, 3906-3919.Gotoh, H., Shibahara, T. and Sakai, T., 2001. Sub- particlescale turbulence model for the MPS method- lagrangian flow model for hydraulic engineering. Computational Fluid Dybanics Journal 9(4) 339- 347.Gotoh, H., Sakai, T and Hayashi, M., 2002. J. Of Hydroscience and Hydraulic Engineering 20(1) 95-102.Greco, M., 2001. A Two-Dimensional Study of Green-Water Loading. Ph. D. Thesis.Johnson, G.R,. Stryk, R.A. and Beissel S.R., 1996. SPH for high velocity impact computations. Comput. Methods Applo. Mech. Eng ., 139, 347- 373.Habe, A., 1989. In Status Rep. Super Computing Japan, ed. T. Nakamura, M. Nagasawa. National Lab. High Energy Phys.Health & Safety Executive. 2001. Analysis of green water susceptibility of FPSO/FSU's on UKCS. HSE Books, Sudbury.Herant, M. and Benz, W., 1991. Hydrodynamical instabilities and mixing in SN 1987A - Two-dimensional simulations of the first 3 months. Astrophysical Journal, 370, 81-84Hsu, T., -J, Sakakiyama, T. and Liu, P.L.-F., 2002. A numerical model for waves and turbulence flow in front of a composite breakwater. Coastal Emgrg., 46, 25-50.Lahy, N., 1989. A particle method for relativistic fluid mechanics. MSc. Thesis. Monash Univ.Libersky, L.D. and Petscheck, A.G., 1991. Smoothed particle hydrodynamics with strength oif materials. Proceedings of the Next Free Lagrange Conference, Vol. 395, Trease, H, Fritts, J and Crowley, W (eds.), Springer- Verlag, 248- 257.Libersky, L.D. and Petscheck, A.G., 1993. High strain Lagrangian hydrodynamics- a three- dimensional SPH code for dynamic material response. J. Comput. Phys. 109, 67- 75.Liu, G.R., 2003. Mesh Free Methods. Moving Beyond the Finite Element Method. CRC Press.Lucy, L., 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013-1024.Monaghan, J.J., 1989. On the problem of penetration in particle methods. J. Comp. Phys. 82, 1-15.Monaghan, J.J., 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Appl. 30, 543- 574.Monaghan, J.J., 1994. Simulating free surface flows with SPH. J. Comp. Phys. 110, 399- 406.Monaghan, J.J., 1996. Gravity Currents and Solitary Waves. Physica D.98, 523-533.Monaghan, J.J., Cas, R.F., Kos, A., Hallworth, M., 1999. Gravity currents descending a ramp in a stratified tank. J. Fluid Mech. 379, 39-70.Monaghan, J.J.and Kos, A., 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port, Coastal and Ocean Engrg. 125, 145-154.Monaghan, J.J., 2000. SPH without tensile instability. J. Comp. Phys. 159, 290-311.Monaghan, J.J., Kos, A., 2000. Scott Russell's wave generator. Phys. Fluids 12, 622-630.Monaghan, J. J. and Latanzio, J.C. 1985. A refined method for astrophysical problems. Astron. Astrophys, 149, 135- 143.Monaghan, J. J. and Latanzio, J.C., 1991.A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophysical Journal, 375, 177-189.Nagasawa, M., Nakamura, T., Miyama, S. M., 1988. Three-dimensional hydrodynamical simulations of type II supernova - Mixing and fragmentation of ejecta Publ. Astron. Soc. Jpn. 40, 691-708.Peskin, C. S., 1977. Numerical analysis of blood flow in the heart. Journal Computational Physics 25, 220- 252.Phillips, G.J. and Monaghan, J.J., 1985. A Numerical Method for Three-dimensional simulations of Collapsing, Isothermal, Magnetic Gas Clouds. Mon. Not. R. Astr. Soc., 216, 883-895Raad, P. http://engr.smu.edu/waves/project.htmlRandles, P.W. and Libersky, L.D., 1996. Smoothed Particle Hydrodynamics - some recent improvementsand applications. Comput. Methods Appl. Mech. Eng., 138, 375- 408.Sakakiyama, T. and Liu, P.L.-F., 2001. Laboratory esperiments for wave motions and turbulence flows in front of a breakwater. Coastal Engrg., 44, 117-139.Shapiro P.R., Martel H., Villumsen J.V., and Owen J.M., 1996. Adaptive Smoothed Particle Hydrodynamics, with Application to Cosmology: Methodology. Astrophysical Journal Supplement 103, .269- 330Stellingwerf, R. F. and Peterkin, R. E., 1990. Smooth particle magnetohydrodynamics. Tech. Rep. MRC/ABQ-R-1248. Albuquerque: Mission Res. Corp.Swelgle, K.S. and Attaway, S.W., 1995. On the feasibility of using smoothed particle hydrodynamics for underwater explotion calculation. Comput- Mech., 17, 151- 168.Trulsen, K., Spjelkavik, B. and Mehlum, E., 2002. Green water computed with a spline-based collocation method for potential flow. Intl. J. Appld. Mech. Engrg. 7(1), 107-123.Wang, Z., Jensen, J. J., Xia, J., 1998. On the Effect of Green Water on Deck on the Wave Bending Moment. Proceedings of the Seventh International Symposium on Practical Design of Ships and Mobile Units, The Hagu

    Smoothed particle hydrodynamics on GPU computing

    No full text
    Smoothed Particle Hydrodynamics (SPH) is a powerful technique used to simulate complex free-surface flows. However one of the main drawbacks of this method is the expensive computational runtime and the large number of particles needed when 3D simulations are performed. High Performance Computing (HPC) therefore becomes essential to accelerate these codes and perform simulations. In this study, parallelization using Graphics Processing Units (GPU) is applied to the SPHysics code (www.sphysics.org) dedicated to free-surface flows with SPH. Simulations involving several million particles on a single GPU exhibit speedups of up to two orders of magnitude over the same calculations using CPU codes, while parallelization using MPI for multi-GPU leads to further acceleration. This cheap technology allows studying real-life engineering problems at reasonable computational runtimes
    corecore